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Abstraction Layers

• “Triple Whammy” of changes: 
1. Platforms (e.g., process variability)
2. Environment (e.g., temperature)
3. Applications (e.g., processing, memory…)

• Static design techniques can’t cope with changes
• Increasing need for runtime adaptivity
• Deploy Computational Cognitive Intelligence (CCI) principles
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Computational Cognitive Intelligence (CCI)
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CCI:  biologically inspired,  but adapted for computing systems

q Explicit models of self and environment for adaptivity/autonomy

q Computational abstraction of biological cognition: self- and environmental-models; 
goal management; understanding & reasoning; contextualization; and history

q Use CCI reference architecture for driving adaptive system design

q Demonstrated utility of CCI in several embedded, CPS, and IoT use-cases (see DAC 
2023 Position Paper)
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Exemplar CCI Reference Architecture
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CCI’s bio-inspired abstractions:

- self- and environmental-models

- history

- goal management

- decision making

- attention & contextualization

- learning
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Reflexive, Reactive

l Actions driven solely on external 
feedback
- E.g., our autonomic nervous 

systems

Reflection, Introspection

l Consider past and future outcomes
- E.g., planning, strategies, 

policies, …

Reflex  vs  Reflect
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What does an open-loop system look like ?

System

• no awareness, but potential
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Abstraction Layers
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What does a closed-loop system look like ?

System

• no awareness, but potential

Reactive System

• reasoning, but still not self-aware

Observe

Decide

Act
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Reflexive, Reactive
l Actions driven solely on external feedback

- E.g., our autonomic nervous system
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What does a self-aware system look like ?

System

• no awareness, but potential

Reactive System

• reasoning, but still not self-aware

Reflective System

• self-aware reasoning
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Reflection, Introspection
l Consider past and future outcomes

- E.g., planning, strategies, policies, …
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What does a self-aware system look like ?

System

• no awareness, but potential

Reactive System

• reasoning, but still not self-aware

Reflective System

• self-aware reasoning
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Computational SA:  Observe-Reflect-Decide-Act
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Our Recent Work on Computational SA for Memory Mgt

NAS 2022

ESL 2020
Self-adaptive memory 
approximation: A formal 
control theory approach

TECS 2022
SEAMS: Self-Optimizing 
Runtime Manager for 
Approximate Memory 
Hierarchies

Workload characterization 
for memory management in 
emerging embedded 
platforms
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ESWEEK 2019
HESSLE-FREE:
Heterogeneous Systems
Leveraging Fuzzy Control 
for Runtime Resource
Management

ProSwap: Period-aware 
Proactive Swapping to
Maximize Embedded 
Application Performance

ESWEEK 2021
Chauffeur: Benchmark 
Suite for Design and End-
to-End Analysis of Self-
Driving Vehicles on 
Embedded Systems.

Scalable deployment of 
MARS in datacenter 
racks for capacity crisis 
mitigation.
(joint work with Meta) 

Ongoing

IESS 2019

Architectural-level

System-level

Application-level
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Challenges in deploying CCI
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Many open challenges:

q Incorporate symbolic/human understanding

q Enable self-monitoring systems for dynamic runtime verification/validation

q Achieve what-ifs via low-overhead reflection and introspection

q Safe, interpretable decision making

q Dealing with unknown-unknowns: empower systems to handle new experiences

Computational Cognitive Intelligence (CCI): critical for adaptive systems



Trust, But Verify: Towards Self-Aware, 
Safe, Autonomous Systems

Minjun Seo, Caio de Melo, Ahmed Nassar*, Saehanseul Yi, Jong-Chan 
Kim**, Biswadip Maity, Bryan Donyanavard***, Rachid Karami, Walaa Amer, 
Nikil Dutt, Fadi J. Kurdahi

Center for Embedded & Cyber-physical Systems
University of California
Irvine, CA USA

*NVIDIA Corp., San Jose, CA
**Kookmin Univ., Korea
*** San Diego State Univ.



The (un)Known (un)Knowns

… there are known knowns; there are things we know we know. 
We also know there are known unknowns; that is to say we 

know there are some things we do not know. But there are also 
unknown unknowns—the ones we don't know we don't know…  

Donald Rumsfeld (former US Sec. Defense), Feb 2000

Your Application System bugs, failures, AI 
unexplainability, other 

disruptive events that we 
aware of, but can occur 

unpredictably

Unforeseen events that we do 
not know how to solve at design 

time. Emergent behavior
???

[Courtesy Fadi Kurdahi]



Sources of Exceptional Behavior

Imperfect Software
bugs and vulnerabilities, etc…

Imperfect Hardware
Harsh Environment, Variability, Aging, 

etc…

Imperfect Models
under- or over-specification, AI 

unpredictability, etc…



Need for Runtime Verification (RV)

• Can’t fully verify a system at design time
– Doesn’t guarantee correctness at runtime due to environmental and 

dynamic nature
– Catastrophic failures can result from uncaught errors or unpredicted 

dynamic behaviors/conditions

• In-situ (on site) runtime verification needed
– Continuously monitor systems to ensure adherence to system requirements

Uber’s self-driving crash

[Courtesy Fadi Kurdahi]

Incorrect code reuse Arithmetic error Thread deadlock error



Runtime Verification
• In-situ (on site) runtime verification

– Continually monitor system to ensure adherence to system requirements

Properties



Trace Abstraction Layer (TAL)
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• Non-Intrusive
– Probe effect
– Separation of implementer and verifier

• Minimal Overhead
– Hardware vs software instrumentation (10-1000x speedup)

• Timely detection
– To give sufficient time for the system to respond

• Comprehensive monitoring
– Processors
– Soc Components (memory, buses, interfaces, etc..)
– Sensors



Using TAL in a Collision Avoidance Subsystem
EngineSpeedSensor
P: 25ns

DistBraking
P: 50ns

Throttle
P: 25ns

ECU
P: 25ns

CameraSensor
P: 4.17mns

A B C

!begin

export v
export a

begin

v = read_sensor()
a = calc_accel(v)

D E F

!begin

export dobj
export vobj

begin

cf = get_frame()
dobj = dist_acc(pf, cf)
vobj = calc_vel(pf, cf)

pf = cf

G H I

!begin

export dbraking

begin

import v
import a

import vobj
dbraking = calc_dbraking(v,a,vobj)

N O P

!begin

export rotation

begin

import target
set_throttle(target)

rotation = get_rotation(target)

target = 0
export target
set_pressure 

(dobj, dbraking)

CollisionAvoidance
P: 4.17mns

J K

L
!begin

begin

import vobj
import dobj

import dbraking
M

target = 
get_throttle(vobj)

export target

dobj > 
dbraking

dobj < 
dbraking

!diagnosis

Q R S
export injection_val

diagnosis

import v
import rotation
injection_val = 

calculate_injection(v, rotation)

Q
                  diagnosis = 

check_speed_sensor()
&& check_fuel_temp_sensor()

&& check_engine_temp_sensor()
&& check_air_quality_sensor()

&& check_throttle_rotation_sensor()
&& check_camera_sensor()

begin = true

• Timed Automata modeling of properties
• 100% detection of properties failures (known unknows). 
• Anomaly detection (unknown unknowns)

• F1 Score: 77% (Carla Simulator)
• Hardware-assisted detection 

• very fast (20 cycles vs ~ 900K cycles in software)



Generalization to Multiple, Distributed IPF 
Systems (IPF 2.0)
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DRIVE: Distributed Runtime Verification for 
Collective Autonomous Systems

● Distributed data storage across a platoon of Self-driving trucks
● Vehicles benefit from perception of other members in the platoon
● Allow for verification of global properties through aggregation of local data
● Results in faster responses to hazards



DRIVE: Platoon Behavior (Properties)
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● Platoon should follow defined states

● Properties extracted to be verified at runtime (SAE standard)

● Spatio-temporal metrics are used to verify correctness

● TLTL grammar 



IPF 2.0: Distributed Runtime Verification

Significant improvement in brake intensity for follower vehicles
• Improves brake lifetime
• Improves regenerative braking energy

• Fast detection (avg <1ms, max ~10ms)
• Does not consider communication 

latency/reliability



Can we do better?
Proactive self-diagnosis – imminent hazard

• Detect increased risk of errors on time

• Focus on errors with unacceptable risk of hazards (critical functions only)

• Difficult to achieve with conventional, reactive error detection mechanisms

• Reaction must finish before a hazard occurs and leads to a requirement violation

Unacceptable

High

Low

Ri
sk

Time

Hazard

Error

Imminent 
hazard

Imminent 
hazard

handled

Error handled

1 2 3 4

Static,
non-fault-tolerant

Reactive,
conventional

Proactive!

Available
reaction time

Available
proaction time

Intellectuals solve problems, geniuses prevent them 
– Albert Einstein
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Why is Proactive important?

❏ Enables continuous optimization & reconfiguration of the system (future work)
❏ Operation point(OP) results from optimization
❏ BoostIID can detect the fault + collect data for further runtime optimization

Safe region
New 

Safe region

X X

Aging

Operating point 
(OP)

No longer in safe 
region

Reconf.
New 

Safe region

X
Adjust scheduling 

params

X
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BoostIID: Fault-agnostic Online Detection 
of WCET Changes in Autonomous Driving

Saehanseul Yi*, Nikil Dutt*

*University of California, Irvine, USA

ASP-DAC 2024
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Motivation

q Autonomous Driving (AD)
○ Real-time (RT) Systems: stringent timing guarantees à deterministic schedule
○ Safety over design-time analyses: Worst-Case Exec. Time (WCET)
○ Tight margin: demanding workloads in both computation and data volume
○ Small errors may lead to catastrophic results

Image courtesy of https://www.7wdata.be/digital-transformation/self-driving-cars-whos-winning-and-why 14

<Example AD Workloads>
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Motivation

● Passenger cars lasts 13.1 years
● Electric vehicles are expected to have longer lifespan than combustion engine vehicles
● Will WCETs stay the same during vehicle’s lifetime?

15Chart from Bureau of Transportation Statistics 2022
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Motivation: Aging of Computer Systems

● Various aging and permanent faults
○ DRAM: Bit Error Rate (BER) increases à re-execution
○ Cache (SRAM): 𝑝!"#$ increases à re-partition
○ SSD, NVMe: cell wear-out à fail-slow

● Aging may unpredictably affect WCETs that were used in the system design
● Safety-critical systems must be safe when designed, and continue to be safe as conditions 

change

16

First step: how to proactively detects these safety threats?
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Related Work

q Design-time fault tolerance [… citation]
○ Add safety margin to WCET
○ (-) Fault-specific analyses to measure potential impact
○ (-) Safety margin incurs energy inefficiency during normal operation
○ (+) Does not require recovery actions

q Run-time fault tolerance [… citations]
○ Control-Flow Checking (CFC): monitors a critical region of a program
○ (-) Heavy overhead; typically requires hardware support
○ (-) Detects after actual violation
○ (+) Does not require safety margin

17
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Our Idea

● View faults as a statistical distribution change of execution times
● (+) Proactively detect distribution change using independent & identical distribution (i.i.d) test
● (+) No need for fault-specific analyses
● (+) Less pessimistic WCET estimation

18

pWCET = x 
s.t. P(DIST > x) < 0.99

<Example fault detection scenario>

q (+) Run-time method with low overhead
q (-) Does not recover from fault

Detection after violation
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Background: Example RT System Design

● Constraints (for each mode)
q Schedulability (assuming EDF)

Can we schedule tasks without violating periods?

q End-to-end deadline
Timing constraint from sensors to actuators

𝑒!: WCET at 𝑠!=1
𝑈 : system utilization

A DAG of tasks from Bosch WATERS Industrial Challenge 2019

𝛿1

𝛿2

"
!∈#

2𝑝! ≈"
!∈#

𝑝! + 𝑟! ≤ 𝑑

𝑈 ="
!

𝑒!
𝑝!𝑠!

≤ 100%
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q Non-blocking periodic tasks
q Async buffer between tasks
q Decision variables: 𝑝! : task period

𝑠! : per-task speed factor
(CPU Frequency)

𝑑 : end-to-end deadline
𝑟!: worst-case delay
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Background: Probabilistic WCET (pWCET)

21

❏ Central Limit Theorem (CLT): good for estimating mean (center)  

<Generalized EV (GEV) Dist.>
<Normal Dist.>

σ: scale
µ: location

𝝃: shape

µ: mean
σ: std dev

❏ Extreme Value Theory (EVT): extreme value (worst case) distribution follows one of 
the three forms: Gumbel, the Weibull, or the Frechet
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Detection with a single i.i.d test

22

❏ KPSS i.i.d test as a boolean classifier
❏ Are the samples from the same distribution? True/False

Old GEV dist. samples New dist.Mixed sample dataset:

# new samples added

pWCET Increase (%)

Each point represents a 
randomly modified GEV dist.

❏ Latency limit (dashed horizontal): within k new samples, the WCET change is detected (configurable)
❏ Safety margin (solid vertical): detector’s blind spot; incorporate it to WCET
❏ KPSS performs well for some tasks
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Detection with other i.i.d tests (Sensitivity)

23

❏ Three i.i.d tests: KPSS, R/S, and Ljung-Box
❏ Different i.i.d tests respond differently to each GEV parameter change
❏ Difficult to define situations to prioritize a certain i.i.d test
❏ Accuracy is fluctuating

(mean)
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Boosting

24

❏ Treat each i.i.d test as a weak classifier
❏ eXtreme Gradient Boosting (XGBoost): combine multiple weak classifiers with weights 

to create a strong predictive model
❏ XGBoost input: 3 i.i.d tests + their history (previous 5 predictions) 

<Boosting example>

KPSS

KPSS-1 leaf= -0.1

leaf=0.2 leaf=0.03

LBox

LBox-1 leaf= -0.1

leaf=0.2 leaf=0.03

T F

… Sum > 1

True False
T F
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Experimental Setup

25

❏ NVIDIA Jetson TX2 platform
❏ 6 task implementation from Chauffeur: autonomous driving benchmark suite

EKF, Hybrid A*, FLOAM, LaneNet, Darknet, and SFM
❏ i.i.d test implementation from Chronovise: a C++ framework for MBPTA

❏ pWCET
❏ pWCET estimation using Chronovise with a prob. 10-4 & cross-checked with MATLAB’s gevcdf
❏ pWCET for KPSS / RS/ L-Box: 1.16 ms / 0.63 ms / 1.03 ms

❏ GEV parameter estimation 
❏ Maximum Likelihood Estimation (MLE) from Chronovise on 500 samples

❏ GEV parameter random modification
❏ Each parameter 0~200%; uniform distribution
❏ Generated by using MATLAB 2022b’s gevrnd

❏ XGBoost python package with 100k detection dataset

Measurement-Based
Probabilistic
Timing
Analysis
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Experimental Results: Overview

26

❏ Detection latency ↓
(# samples added)
à Safety margin ↓
à Energy efficiency ↑

❏ Huge improvement in FLAOM 
and LaneNet

❏ Poor results on EKF and SFM
❏ EKF: already good 

enough with single i.i.d
test

❏ SFM: distribution is too 
difficult for the current 
set of i.i.d tests.

KPSS

BoostIID

Safety
Margin

pWCET Increase (%)

pWCET Increase (%)
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Experimental Results: F1 Score & Energy Efficiency
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❏ Except for SFM, the F1 score ranges from 0.96 to 0.99 on 100k datasets

False positive

False 
negative

❏ 62.6% energy reduction compared to classical Fault-aware WCET technique (=100% safety margin)
❏ BoostIID is fault-agnostic and improves energy efficiency by reducing the safety margin
❏ But cannot tolerate faults as the Fault-aware approach does



© Dutt Research Group, 2024

Conclusion

● Novel usage of i.i.d test for runtime detection of execution time change
● BoostIID alleviates pessimistic safety margin in WCET with previous fault-aware 

WCET methods
● As a result, BoostIID achieved 62.6% average dynamic power reduction in an example 

RT system with Autonomous Driving workloads
● Proactiveness of our method provides time for further runtime reconfiguration
● In the future, we plan to extend our work to recover from faults after detection using 

BoostIID

28



Key Takeaways
• (lack of) Trust is not just about AI

– The Unknown knowns:
• Hardware failure
• Software bugs,
• Security
• Over/under specifications
• … and AI un{predictability, explainability, bounded behavior}

– The Unknown Unknowns 
• Emergent Behavior
• Unforeseen scenarios
• Zero day attacks

• Need to make systems self-aware, and ….



© Dutt Research Group, 2024

Questions?
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Adverts…..
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