
D R G

Towards Self-Aware and
Safe Autonomous Systems

Nikil Dutt
Dutt Research Group

UC Irvine

Acknowledgements: DRG and IPF team

https://duttgroup.ics.uci.edu/

© Dutt Research Group, 2024

Diversity in Emerging Systems and Applications

Applications

Vendor Libraries

Kernel

Architecture

Device Tech

2

Abstraction Layers

© Dutt Research Group, 2024

Diversity in Emerging Systems and Applications

Applications

Vendor Libraries

Kernel

Architecture

Device Tech

3

Abstraction Layers

• “Triple Whammy” of changes:
1. Platforms (e.g., process variability)
2. Environment (e.g., temperature)
3. Applications (e.g., processing, memory…)

• Static design techniques can’t cope with changes
• Increasing need for runtime adaptivity
• Deploy Computational Cognitive Intelligence (CCI) principles

© Dutt Research Group, 2024

Computational Cognitive Intelligence (CCI)

4

CCI: biologically inspired, but adapted for computing systems

q Explicit models of self and environment for adaptivity/autonomy

q Computational abstraction of biological cognition: self- and environmental-models;
goal management; understanding & reasoning; contextualization; and history

q Use CCI reference architecture for driving adaptive system design

q Demonstrated utility of CCI in several embedded, CPS, and IoT use-cases (see DAC
2023 Position Paper)

© Dutt Research Group, 2024

Exemplar CCI Reference Architecture

5

CCI’s bio-inspired abstractions:

- self- and environmental-models

- history

- goal management

- decision making

- attention & contextualization

- learning

D R G

Reflexive, Reactive

l Actions driven solely on external
feedback
- E.g., our autonomic nervous

systems

Reflection, Introspection

l Consider past and future outcomes
- E.g., planning, strategies,

policies, …

Reflex vs Reflect

© Dutt Research Group, 2024

What does an open-loop system look like ?

System

• no awareness, but potential

7

Abstraction Layers

© Dutt Research Group, 2024

What does a closed-loop system look like ?

System

• no awareness, but potential

Reactive System

• reasoning, but still not self-aware

Observe

Decide

Act

8

Reflexive, Reactive
l Actions driven solely on external feedback

- E.g., our autonomic nervous system

© Dutt Research Group, 2024

What does a self-aware system look like ?

System

• no awareness, but potential

Reactive System

• reasoning, but still not self-aware

Reflective System

• self-aware reasoning

9

Reflection, Introspection
l Consider past and future outcomes

- E.g., planning, strategies, policies, …

© Dutt Research Group, 2024

What does a self-aware system look like ?

System

• no awareness, but potential

Reactive System

• reasoning, but still not self-aware

Reflective System

• self-aware reasoning

10

Computational SA: Observe-Reflect-Decide-Act

© Dutt Research Group, 2024

Our Recent Work on Computational SA for Memory Mgt

NAS 2022

ESL 2020
Self-adaptive memory
approximation: A formal
control theory approach

TECS 2022
SEAMS: Self-Optimizing
Runtime Manager for
Approximate Memory
Hierarchies

Workload characterization
for memory management in
emerging embedded
platforms

11

ESWEEK 2019
HESSLE-FREE:
Heterogeneous Systems
Leveraging Fuzzy Control
for Runtime Resource
Management

ProSwap: Period-aware
Proactive Swapping to
Maximize Embedded
Application Performance

ESWEEK 2021
Chauffeur: Benchmark
Suite for Design and End-
to-End Analysis of Self-
Driving Vehicles on
Embedded Systems.

Scalable deployment of
MARS in datacenter
racks for capacity crisis
mitigation.
(joint work with Meta)

Ongoing

IESS 2019

Architectural-level

System-level

Application-level

© Dutt Research Group, 2024

Challenges in deploying CCI

12

Many open challenges:

q Incorporate symbolic/human understanding

q Enable self-monitoring systems for dynamic runtime verification/validation

q Achieve what-ifs via low-overhead reflection and introspection

q Safe, interpretable decision making

q Dealing with unknown-unknowns: empower systems to handle new experiences

Computational Cognitive Intelligence (CCI): critical for adaptive systems

Trust, But Verify: Towards Self-Aware,
Safe, Autonomous Systems

Minjun Seo, Caio de Melo, Ahmed Nassar*, Saehanseul Yi, Jong-Chan
Kim**, Biswadip Maity, Bryan Donyanavard***, Rachid Karami, Walaa Amer,
Nikil Dutt, Fadi J. Kurdahi

Center for Embedded & Cyber-physical Systems
University of California
Irvine, CA USA

*NVIDIA Corp., San Jose, CA
**Kookmin Univ., Korea
*** San Diego State Univ.

The (un)Known (un)Knowns

… there are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we

know there are some things we do not know. But there are also
unknown unknowns—the ones we don't know we don't know…

Donald Rumsfeld (former US Sec. Defense), Feb 2000

Your Application System bugs, failures, AI
unexplainability, other

disruptive events that we
aware of, but can occur

unpredictably

Unforeseen events that we do
not know how to solve at design

time. Emergent behavior
???

[Courtesy Fadi Kurdahi]

Sources of Exceptional Behavior

Imperfect Software
bugs and vulnerabilities, etc…

Imperfect Hardware
Harsh Environment, Variability, Aging,

etc…

Imperfect Models
under- or over-specification, AI

unpredictability, etc…

Need for Runtime Verification (RV)

• Can’t fully verify a system at design time
– Doesn’t guarantee correctness at runtime due to environmental and

dynamic nature
– Catastrophic failures can result from uncaught errors or unpredicted

dynamic behaviors/conditions

• In-situ (on site) runtime verification needed
– Continuously monitor systems to ensure adherence to system requirements

Uber’s self-driving crash

[Courtesy Fadi Kurdahi]

Incorrect code reuse Arithmetic error Thread deadlock error

Runtime Verification
• In-situ (on site) runtime verification

– Continually monitor system to ensure adherence to system requirements

Properties

Trace Abstraction Layer (TAL)

6

Preprocesor

Failure

Micro-
processor

C
om

pat

Verification
Layer

Trace
Compatibility
Layer

Timestamp PC Address Valid Opcode Memory
Address

Value PID

Filtering
Layer

Programable Runtime
Verification Unit (PRVU)

Filtering API

Timed EventsTimed EventsTimed Events
Timed
Events

Verification API

Programable Filter

FIFO

Trace Buffer

pr
og

ra
m

pr
og

ra
m

System Bus

Filter

Runtime Verification /
Inference Engine

Programmer

Tester,
Verification

Expert

Program

TAL
Verification
Properties

Hardware
Expert

write

define

est
im

ate
 & defi

ne

TAL hardware
configuration +

Program

define

load program

(a) (c)(b)

s1 s2 s3

s0

s4 s5 s6

s7

Start state

!

!

" "

#

!

!
Final state

Automata Processor

Inference
Layer

Inference API

Inference
Engine (IE)

Sensor 0 Sensor N…

pr
og

ra
m

• Non-Intrusive
– Probe effect
– Separation of implementer and verifier

• Minimal Overhead
– Hardware vs software instrumentation (10-1000x speedup)

• Timely detection
– To give sufficient time for the system to respond

• Comprehensive monitoring
– Processors
– Soc Components (memory, buses, interfaces, etc..)
– Sensors

Using TAL in a Collision Avoidance Subsystem
EngineSpeedSensor
P: 25ns

DistBraking
P: 50ns

Throttle
P: 25ns

ECU
P: 25ns

CameraSensor
P: 4.17mns

A B C

!begin

export v
export a

begin

v = read_sensor()
a = calc_accel(v)

D E F

!begin

export dobj
export vobj

begin

cf = get_frame()
dobj = dist_acc(pf, cf)
vobj = calc_vel(pf, cf)

pf = cf

G H I

!begin

export dbraking

begin

import v
import a

import vobj
dbraking = calc_dbraking(v,a,vobj)

N O P

!begin

export rotation

begin

import target
set_throttle(target)

rotation = get_rotation(target)

target = 0
export target
set_pressure

(dobj, dbraking)

CollisionAvoidance
P: 4.17mns

J K

L
!begin

begin

import vobj
import dobj

import dbraking
M

target =
get_throttle(vobj)

export target

dobj >
dbraking

dobj <
dbraking

!diagnosis

Q R S
export injection_val

diagnosis

import v
import rotation
injection_val =

calculate_injection(v, rotation)

Q
 diagnosis =

check_speed_sensor()
&& check_fuel_temp_sensor()

&& check_engine_temp_sensor()
&& check_air_quality_sensor()

&& check_throttle_rotation_sensor()
&& check_camera_sensor()

begin = true

• Timed Automata modeling of properties
• 100% detection of properties failures (known unknows).
• Anomaly detection (unknown unknowns)

• F1 Score: 77% (Carla Simulator)
• Hardware-assisted detection

• very fast (20 cycles vs ~ 900K cycles in software)

Generalization to Multiple, Distributed IPF
Systems (IPF 2.0)

9

DRIVE: Distributed Runtime Verification for
Collective Autonomous Systems

● Distributed data storage across a platoon of Self-driving trucks
● Vehicles benefit from perception of other members in the platoon
● Allow for verification of global properties through aggregation of local data
● Results in faster responses to hazards

DRIVE: Platoon Behavior (Properties)

10

● Platoon should follow defined states

● Properties extracted to be verified at runtime (SAE standard)

● Spatio-temporal metrics are used to verify correctness

● TLTL grammar

IPF 2.0: Distributed Runtime Verification

Significant improvement in brake intensity for follower vehicles
• Improves brake lifetime
• Improves regenerative braking energy

• Fast detection (avg <1ms, max ~10ms)
• Does not consider communication

latency/reliability

Can we do better?
Proactive self-diagnosis – imminent hazard

• Detect increased risk of errors on time

• Focus on errors with unacceptable risk of hazards (critical functions only)

• Difficult to achieve with conventional, reactive error detection mechanisms

• Reaction must finish before a hazard occurs and leads to a requirement violation

Unacceptable

High

Low

Ri
sk

Time

Hazard

Error

Imminent
hazard

Imminent
hazard

handled

Error handled

1 2 3 4

Static,
non-fault-tolerant

Reactive,
conventional

Proactive!

Available
reaction time

Available
proaction time

Intellectuals solve problems, geniuses prevent them
– Albert Einstein

© Dutt Research Group, 2024 19

Why is Proactive important?

❏ Enables continuous optimization & reconfiguration of the system (future work)
❏ Operation point(OP) results from optimization
❏ BoostIID can detect the fault + collect data for further runtime optimization

Safe region
New

Safe region

X X

Aging

Operating point
(OP)

No longer in safe
region

Reconf.
New

Safe region

X
Adjust scheduling

params

X

D R G

BoostIID: Fault-agnostic Online Detection
of WCET Changes in Autonomous Driving

Saehanseul Yi*, Nikil Dutt*

*University of California, Irvine, USA

ASP-DAC 2024

© Dutt Research Group, 2024

Motivation

q Autonomous Driving (AD)
○ Real-time (RT) Systems: stringent timing guarantees à deterministic schedule
○ Safety over design-time analyses: Worst-Case Exec. Time (WCET)
○ Tight margin: demanding workloads in both computation and data volume
○ Small errors may lead to catastrophic results

Image courtesy of https://www.7wdata.be/digital-transformation/self-driving-cars-whos-winning-and-why 14

<Example AD Workloads>

© Dutt Research Group, 2024

Motivation

● Passenger cars lasts 13.1 years
● Electric vehicles are expected to have longer lifespan than combustion engine vehicles
● Will WCETs stay the same during vehicle’s lifetime?

15Chart from Bureau of Transportation Statistics 2022

© Dutt Research Group, 2024

Motivation: Aging of Computer Systems

● Various aging and permanent faults
○ DRAM: Bit Error Rate (BER) increases à re-execution
○ Cache (SRAM): 𝑝!"#$ increases à re-partition
○ SSD, NVMe: cell wear-out à fail-slow

● Aging may unpredictably affect WCETs that were used in the system design
● Safety-critical systems must be safe when designed, and continue to be safe as conditions

change

16

First step: how to proactively detects these safety threats?

© Dutt Research Group, 2024

Related Work

q Design-time fault tolerance [… citation]
○ Add safety margin to WCET
○ (-) Fault-specific analyses to measure potential impact
○ (-) Safety margin incurs energy inefficiency during normal operation
○ (+) Does not require recovery actions

q Run-time fault tolerance [… citations]
○ Control-Flow Checking (CFC): monitors a critical region of a program
○ (-) Heavy overhead; typically requires hardware support
○ (-) Detects after actual violation
○ (+) Does not require safety margin

17

© Dutt Research Group, 2024

Our Idea

● View faults as a statistical distribution change of execution times
● (+) Proactively detect distribution change using independent & identical distribution (i.i.d) test
● (+) No need for fault-specific analyses
● (+) Less pessimistic WCET estimation

18

pWCET = x
s.t. P(DIST > x) < 0.99

<Example fault detection scenario>

q (+) Run-time method with low overhead
q (-) Does not recover from fault

Detection after violation

© Dutt Research Group, 2024

Background: Example RT System Design

● Constraints (for each mode)
q Schedulability (assuming EDF)

Can we schedule tasks without violating periods?

q End-to-end deadline
Timing constraint from sensors to actuators

𝑒!: WCET at 𝑠!=1
𝑈 : system utilization

A DAG of tasks from Bosch WATERS Industrial Challenge 2019

𝛿1

𝛿2

"
!∈#

2𝑝! ≈"
!∈#

𝑝! + 𝑟! ≤ 𝑑

𝑈 ="
!

𝑒!
𝑝!𝑠!

≤ 100%

20

q Non-blocking periodic tasks
q Async buffer between tasks
q Decision variables: 𝑝! : task period

𝑠! : per-task speed factor
(CPU Frequency)

𝑑 : end-to-end deadline
𝑟!: worst-case delay

© Dutt Research Group, 2024

Background: Probabilistic WCET (pWCET)

21

❏ Central Limit Theorem (CLT): good for estimating mean (center)

<Generalized EV (GEV) Dist.>
<Normal Dist.>

σ: scale
µ: location

𝝃: shape

µ: mean
σ: std dev

❏ Extreme Value Theory (EVT): extreme value (worst case) distribution follows one of
the three forms: Gumbel, the Weibull, or the Frechet

© Dutt Research Group, 2024

Detection with a single i.i.d test

22

❏ KPSS i.i.d test as a boolean classifier
❏ Are the samples from the same distribution? True/False

Old GEV dist. samples New dist.Mixed sample dataset:

new samples added

pWCET Increase (%)

Each point represents a
randomly modified GEV dist.

❏ Latency limit (dashed horizontal): within k new samples, the WCET change is detected (configurable)
❏ Safety margin (solid vertical): detector’s blind spot; incorporate it to WCET
❏ KPSS performs well for some tasks

© Dutt Research Group, 2024

Detection with other i.i.d tests (Sensitivity)

23

❏ Three i.i.d tests: KPSS, R/S, and Ljung-Box
❏ Different i.i.d tests respond differently to each GEV parameter change
❏ Difficult to define situations to prioritize a certain i.i.d test
❏ Accuracy is fluctuating

(mean)

© Dutt Research Group, 2024

Boosting

24

❏ Treat each i.i.d test as a weak classifier
❏ eXtreme Gradient Boosting (XGBoost): combine multiple weak classifiers with weights

to create a strong predictive model
❏ XGBoost input: 3 i.i.d tests + their history (previous 5 predictions)

<Boosting example>

KPSS

KPSS-1 leaf= -0.1

leaf=0.2 leaf=0.03

LBox

LBox-1 leaf= -0.1

leaf=0.2 leaf=0.03

T F

… Sum > 1

True False
T F

© Dutt Research Group, 2024

Experimental Setup

25

❏ NVIDIA Jetson TX2 platform
❏ 6 task implementation from Chauffeur: autonomous driving benchmark suite

EKF, Hybrid A*, FLOAM, LaneNet, Darknet, and SFM
❏ i.i.d test implementation from Chronovise: a C++ framework for MBPTA

❏ pWCET
❏ pWCET estimation using Chronovise with a prob. 10-4 & cross-checked with MATLAB’s gevcdf
❏ pWCET for KPSS / RS/ L-Box: 1.16 ms / 0.63 ms / 1.03 ms

❏ GEV parameter estimation
❏ Maximum Likelihood Estimation (MLE) from Chronovise on 500 samples

❏ GEV parameter random modification
❏ Each parameter 0~200%; uniform distribution
❏ Generated by using MATLAB 2022b’s gevrnd

❏ XGBoost python package with 100k detection dataset

Measurement-Based
Probabilistic
Timing
Analysis

© Dutt Research Group, 2024

Experimental Results: Overview

26

❏ Detection latency ↓
(# samples added)
à Safety margin ↓
à Energy efficiency ↑

❏ Huge improvement in FLAOM
and LaneNet

❏ Poor results on EKF and SFM
❏ EKF: already good

enough with single i.i.d
test

❏ SFM: distribution is too
difficult for the current
set of i.i.d tests.

KPSS

BoostIID

Safety
Margin

pWCET Increase (%)

pWCET Increase (%)

© Dutt Research Group, 2024

Experimental Results: F1 Score & Energy Efficiency

27

❏ Except for SFM, the F1 score ranges from 0.96 to 0.99 on 100k datasets

False positive

False
negative

❏ 62.6% energy reduction compared to classical Fault-aware WCET technique (=100% safety margin)
❏ BoostIID is fault-agnostic and improves energy efficiency by reducing the safety margin
❏ But cannot tolerate faults as the Fault-aware approach does

© Dutt Research Group, 2024

Conclusion

● Novel usage of i.i.d test for runtime detection of execution time change
● BoostIID alleviates pessimistic safety margin in WCET with previous fault-aware

WCET methods
● As a result, BoostIID achieved 62.6% average dynamic power reduction in an example

RT system with Autonomous Driving workloads
● Proactiveness of our method provides time for further runtime reconfiguration
● In the future, we plan to extend our work to recover from faults after detection using

BoostIID

28

Key Takeaways
• (lack of) Trust is not just about AI

– The Unknown knowns:
• Hardware failure
• Software bugs,
• Security
• Over/under specifications
• … and AI un{predictability, explainability, bounded behavior}

– The Unknown Unknowns
• Emergent Behavior
• Unforeseen scenarios
• Zero day attacks

• Need to make systems self-aware, and ….

© Dutt Research Group, 2024

Questions?

29

Research Support:

§ National Science
Foundation (NSF)

§ DFG
§ Facebook (Meta)
§ Samsung

Acknowledgements:

§ Dutt Research Group
(DRG)

§ Fadi Kurdahi/ UCI
§ Bryan Donyanavard/

SDSU
§ Andreas Herkersdorf /

TU Munich
§ Rolf Ernst/ TU

Braunschweig
§ Jason Jong-Chan Kim,

Kookmin Univ
§ Axel Jantsch/ TUWien

© Dutt Research Group, 2024

Adverts…..

ACM TCPS Special Issue on Self-Awareness in CPS
Guest Editors: Axel Jantsch, Nikil Dutt, Peter Lewis
August 2020

Proceedings of the IEEE Special Issue on
Self-Awareness for Autonomous Systems
Guest Editors: Nikil Dutt, Carlo Regazzoni, Bernhard Rinner, Xin Yao
July 2020

© Dutt Research Group, 2024 31

Publications

Biswadip Maity, Bryan Donyanavard, Anmol Surhonne, Amir Rahmani, Andreas Herkersdorf, and Nikil Dutt.
“SEAMS: Self-Optimizing Runtime Manager for Approximate Memory Hierarchies,” in ACM Transactions on
Embedded Computing Systems 20, 5, Article 48 (July 2021), 26 pages. DOI: https://doi.org/10.1145/3466875

Biswadip Maity, Majid Shoushtari, Amir M. Rahmani and Nikil Dutt,
“Self-adaptive Memory Approximation: A Formal Control Theory Approach,” in IEEE Embedded Systems
Letters, DOI: https://www.doi.org/10.1109/LES.2019.2941018.

ESL 2020
Self-adaptive memory
approximation: A formal
control theory approach

TECS 2022
SEAMS: Self-Optimizing
Runtime Manager for
Approximate Memory
Hierarchies

Architectural-level

https://doi.org/10.1145/3466875
https://www.doi.org/10.1109/LES.2019.2941018

© Dutt Research Group, 2024 32

Publications

Kasra Moazzemi, Biswadip Maity, Saehanseul Yi, Amir M. Rahmani, and Nikil Dutt. 2019. HESSLE-FREE:
Heterogeneous Systems Leveraging Fuzzy Control for Runtime Resource Management. ACM Transactions
on Embedded Computing Systems (TECS), Article 74 (October 2019), 18.5s 19 pages.
DOI:https://doi.org/10.1145/3358203

E. A. Rambo, Bryan Donyanavard, Minjun Seo, Florian Maurer, Thawra M. Kadeed, Caio Batista De Melo,
Biswadip Maity, Anmol Surhonne, Andreas Herkersdorf, Fadi Kurdahi, Nikil D Dutt, Rolf Ernst, "The Self-
Aware Information Processing Factory Paradigm for Mixed-Critical Multiprocessing," in IEEE Transactions
on Emerging Topics in Computing, DOI: https://www.doi.org/10.1109/TETC.2020.3011663.

Tiago Mück, Bryan Donyanavard, Biswadip Maity, Kasra Moazzemi, and Nikil Dutt.
“MARS: Middleware for Adaptive Reflective Computer Systems,” in arXiv:2107.11417 [cs.DC]

ESWEEK 2019
HESSLE-FREE:
Heterogeneous Systems
Leveraging Fuzzy Control
for Runtime Resource
Management

Scalable deployment of
MARS in datacenter
racks for capacity crisis
mitigation.
(joint work with Meta)

Ongoing

System-level

https://doi.org/10.1145/3358203
https://www.doi.org/10.1109/TETC.2020.3011663

© Dutt Research Group, 2024 33

Publications

NAS 2022

Workload characterization
for memory management in
emerging embedded
platforms

ProSwap: Period-aware
Proactive Swapping to
Maximize Embedded
Application Performance

ESWEEK 2021
Chauffeur: Benchmark
Suite for Design and End-
to-End Analysis of Self-
Driving Vehicles on
Embedded Systems.

IESS 2019

Application-level

D. Seo, B. Maity, P. Chen, D. Yun, B. Donyanavard, N. Dutt. “ProSwap: Period-aware Proactive Swapping to
Maximize Embedded Application Performance”
to appear in 16th International Conference on Networking, Architecture, and Storage (NAS 2022).

Biswadip Maity, Saehanseul Yi, Dongjoo Seo, Leming Cheng, Sung-Soo Lim, Jong-Chan Kim, Bryan
Donyanavard, and Nikil Dutt. 2021. “Chauffeur: Benchmark Suite for Design and End-to-End Analysis of Self-
Driving Vehicles on Embedded Systems”. ACM Transactions on Embedded Computing Systems 20, 5s, Article
74 (October 2021), 22 pages. DOI:https://doi.org/10.1145/3477005

B. Maity, B. Donyanavard and N. Dutt. “Self-aware Memory Management for Emerging Energy-efficient
Architectures,” in 11th International Green and Sustainable Computing Workshops (IGSC), 2020, pp. 1-8, doi:
10.1109/IGSC51522.2020.9291086.

https://doi.org/10.1145/3477005

© Dutt Research Group, 2024 34

Publications – IPF Project Related

M. Ji, S. Yi, C. Koo, S. Ahn, D. Seo, N. Dutt, and J. Kim, “Demand Layering for Real-Time DNN Inference with Minimized Memory Usage,”
Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS 2022), December 5-8, 2022, to appear.

S. Yi, T. -W. Kim, J. -C. Kim and N. Dutt, "Energy-Efficient Adaptive System Reconfiguration for Dynamic Deadlines in Autonomous
Driving," 2021 IEEE 24th International Symposium on Real-Time Distributed Computing (ISORC), 2021, pp. 96-104, doi:
10.1109/ISORC52013.2021.00023.

W. Jang, H. Jeong, K. Kang, N. Dutt and J. -C. Kim, "R-TOD: Real-Time Object Detector with Minimized End-to-End Delay for Autonomous
Driving," 2020 IEEE Real-Time Systems Symposium (RTSS), 2020, pp. 191-204, doi: 10.1109/RTSS49844.2020.00027

A. Miele, A. Kanduri, K. Moazzemi, D. Juhász, A. Rahmani, N. Dutt, P. Liljeberg and A. Jantsch (2019), “On-Chip Dynamic Resource
Management”, Foundations and Trends in Electronic Design Automation: Vol. 13, No. 1-2, pp 1–144. DOI: 10.1561/1000000055.

Minjun Seo and Fadi Kurdahi. Efficient Tracing Methodology Using Automata Processor. ACM Transactions on Embedded Computing
Systems (TECS), Article 80, (October 2019), 18.5s: 1-18. DOI:https://doi.org/10.1145/3358200

Tianyi Zhang, Minjun Seo, Bryan Donyanavard, Nikil Dutt, and Fadi J. Kurdahi, "Predicting Failures in Embedded Systems using Long
Short-Term Inference," in IEEE Embedded Systems Letters, DOI: https://www.doi.org/10.1109/LES.2020.3007361.

.

https://doi.org/10.1145/3358200
https://www.doi.org/10.1109/LES.2020.3007361

© Dutt Research Group, 2024 35

Publications – IPF Project Related

H. Hoffman, A. Jantsch, and N. Dutt, "Embodied Self-Aware Computing Systems," Proceedings of the IEEE, Special issue on Self-
Awareness, Volume 108, Issue 7, July 2020. DOI: 10.1109/JPROC.2020.2977054

K. Bellman, N. Dutt, L. Esterle, A. Herkersdorf, A. Jantsch, C. Landauer, P. Lewis, M. Platzner, N. Taherinejad, and K. Tammemäe, "Self-
aware Cyber-Physical Systems," ACM Transactions on Cyber-Physical Systems, Article 38, June 2020. DOI:
https://doi.org/10.1145/3375716

F. Maurer, B. Donyanavard, A. Rahmani, N. Dutt, and A. Herkersdorf, "Emergent Control of MPSoC Operation by a Hierarchical
Supervisor / Reinforcement Learning Approach," Proceedings of the 2020 Conference on Design, Automation and Test in Europe (DATE
2020), March 2020. DOI: 10.23919/DATE48585.2020.9116574

B. Donyanavard, T. Mück, A. M. Rahmani, N. Dutt, A. Sadighi, F. Maurer, and A. Herkersdorf. 2019. SOSA: Self-Optimizing Learning with
Self-Adaptive Control for Hierarchical System-on-Chip Management. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’52). Association for Computing Machinery, New York, NY, USA, 685–698.
DOI:https://doi.org/10.1145/3352460.3358312

M. Seo and F. Kurdahi – Efficient Tracing Methodology Using Automata Processor. Proceedings of the International Symposium on
Hardware/Software Codesign and System Synthesis (CODES+ISSS 2019), New York, NY, October 2019. DOI: 10.1145/3358200

https://doi.org/10.1145/3375716

